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We obtained the global persistence exponent �g for a continuous spin model on the simple cubic lattice with
double-exchange interaction by using two different methods. First, we estimated the exponent �g by following
the time evolution of probability P�t� that the order parameter of the model does not change its sign up to time
t�P�t�� t−�g�. Afterwards, that exponent was estimated through the scaling collapse of the universal function
L�gzP�t� for different lattice sizes. Our results for both approaches are in very good agreement with each other.
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During the past few years, a great number of experimental
and theoretical works have been published about manganites
with perovskite structure, A1−xBxMnO3, where A is a rare
earth such as La, Nd, and Pr, B is a divalent element such as
Sr, Ca, Ba, and Pb, and x is the concentration of B. Such
attention is due to the rediscovery of colossal magnetoresist-
ence �CMR� �1–4�, an extremely large change in the resis-
tivity when a magnetic field is applied near the Curie tem-
perature. Besides, these manganese oxides possess metal-
insulator �MI� transitions, as well as a rich variety of
physical properties and possible technological applications,
for instance magnetic sensors and memory technology.

In these compounds, the MI transition associated with the
ferromagnetic spin alignment has been widely explained by
the double-exchange �DE� mechanism �5–10�, in which the
transfer of an itinerant eg electron between the neighboring
Mn ions through the O2− ion results in a ferromagnetic inter-
action. Anderson and Hasegawa �6� showed that the transfer-
ence element is proportional to cos�� /2�, where � is the
angle between the ionic neighboring spins. This result was
recently confirmed for layered manganites �11�. Although
this theory has also succeeded in explaining qualitatively
CMR, some authors have argued that alone it cannot provide
a complete description of this phenomenon. They suggest
that, in addition to the double-exchange, a complete under-
standing of these materials should include strong electron
correlations �12�, a strong electron-phonon interaction �13�,
or coexisting phases �14�. One might therefore think that
double exchange alone cannot explain CMR in manganites
�13�, but this remains an open question. What we know is
that in the study of the manganites, the double-exchange
theory plays an important role, both in the study of CMR and
in explaining the presence of a ferromagnetic state �for x
�0.3� in doped manganites, furnishing the basis for describ-
ing manganites with colossal magnetoresistence.

The Hamiltonian of a classical spin model with double-
exchange interactions is given by �15�

H = − J�
�i,j	


1 + Si · S j , �1�

where �i , j	 indicates that the sum runs over all nearest-
neighbor pairs of lattice site, J is the ferromagnetic coupling
constant, and the spin Si= �Si

x ,Sj
y ,Sk

z� is a three-dimensional
vector of unit length.

The critical properties of the DE models have been inten-
sively studied by using Monte Carlo �MC� simulations. In
the equilibrium �15–18�, the estimates for the static critical
exponents indicate that this model belongs to the universality
class of the classical Heisenberg model �19�. Several experi-
mental works about the critical properties of the doped per-
ovskite manganites also support this assertion �20–22�. Very
recently the dynamic critical behavior of the DE model was
studied by using the short-time Monte Carlo simulations, and
estimates for the static critical exponents � and � and the
dynamic critical exponents z and � were derived �23�. That
approach is based on the results of Janssen et al. �24�, which
showed that universality and scaling behavior are already
present in systems since their early stages of the time evolu-
tion after quenching them from high temperatures to the
critical one. By using renormalization-group techniques, they
obtained for the kth moment of the magnetization, extended
to systems of finite size �25�, the following scaling relation:

M�k��t,�,L,m0� = b−k�/�M�k��b−zt,b1/��,b−1L,bx0m0� , �2�

where t is time, b is an arbitrary spatial rescaling factor, �
= �T−Tc� /Tc is the reduced temperature, and L is the linear
size of the lattice. The exponents � and � are the equilibrium
critical exponents associated with the order parameter and
the correlation length, and z is the dynamical exponent ��
��z, where � is the time correlation�. For a large lattice size
L and small initial magnetization m0 at the critical tempera-
ture ��=0�, the magnetization is governed by a new dynamic
exponent �,

M�t� � m0t�, �3�

if we choose the scaling factor b= t1/z in Eq. �2�. This new
critical index, independent of the previously known expo-
nents, characterizes the so-called “critical initial slip,” the
anomalous increase of the magnetization when the system is
quenched to the critical temperature Tc. In the sequence, an-
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other new independent dynamic critical exponent was found
by Majumdar et al. �26� to describe the behavior of the glo-
bal persistence probability P�t� that the order parameter has
not changed its sign up to time t. At criticality, P�t� is ex-
pected to decay algebraically as

P�t� � t−�g, �4�

where �g is the global persistence exponent. Since then, the
study of the persistence behavior has attracted an enormous
amount of interest, playing an important role in the study of
systems far from equilibrium �26–38�.

Since the time evolution of the order parameter is in gen-
eral a non-Markovian process, the new critical exponent �g is
independent of the usual exponents. However, as argued by
Majumdar et al. �26�, if the global order parameter is de-
scribed by a Markovian process, �g is not a new independent
exponent, being related to other critical exponents by the
equation

�g = �g = − � +
d

z2 −
�

�z
. �5�

The global persistence probability P�t� can be defined as

P�t� = 1 − �
t�=1

t

	�t�� , �6�

where 	�t�� is the fraction of the samples that have changed
their state for the first time at the instant t�.

In this paper, we performed short-time Monte Carlo simu-
lations to explore the scaling behavior of the global persis-
tence probability P�t�, for a classical ferromagnet with
double-exchange interaction. The dynamical exponent �g
that governs the behavior of P�t� at criticality is obtained by
using two different approaches: the straight application of the
power law behavior �see Eq. �4�� and by means of time-
series data collapse. To our knowledge, this is the first time
that this exponent is calculated for a three-dimensional
model and continuous spin variables.

In our simulations, we considered L
L
L �L=20, 25,
30, 35, 40, 50, and 60� simple cubic lattices with periodic
boundary conditions. Simulations were done at critical tem-
perature �15� Tc=0.74515, in units of J /kB, where kB is Bolt-
zmann’s constant. The update we used is local and follows
the METROPOLIS algorithm, i.e., at each site of the lattice

TABLE I. The global persistence exponent �g from the power
law behavior for different initial magnetizations m0 and even lattice
sizes.

L m0=0.005 m0=0.0025 m0=0.00125 Extrapolated value

20 0.315�14� 0.326�8� 0.337�12� 0.342�4�
30 0.315�5� 0.322�12� 0.335�9� 0.339�5�
40 0.315�9� 0.321�31� 0.336�28� 0.339�7�
50 0.319�10� 0.325�11� 0.336�14� 0.338�6�
60 0.313�7� 0.315�14� 0.333�10� 0.336�9�

FIG. 1. Time evolution of the global persistence probability P�t�
for a lattice size L=60 and m0=0.00125. The error bars were cal-
culated over five sets of 5000 samples.

FIG. 2. Dynamical exponent �g as a function of the initial mag-
netization m0 for cubic lattices with L=60. Each point represents an
average over five sets of 5000 samples.

FIG. 3. Scaling collapse of the scaled persistence probability vs
scaled time for L1=50 and L2=60. The curves were obtained from
five independent bins of 5000 samples.
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�during the simulation� a trial orientation of the spin is ran-
domly chosen and accepted or rejected according to the
probability e−��E�−E�, where E� �E� is the new �old� energy of
the spin system, �=J /kBTc, and kB is the Boltzmann con-
stant. The estimates were obtained from five independent
bins with 5000 samples each for t up to 500 Monte Carlo
sweeps.

In the first method, we used the scaling relation given by
Eq. �4� in order to obtain �g as a function of m0 for several
values of the initial magnetization. Here, it is necessary to
work with a precise and small value of the magnetization,
m0�0. Next, the estimate for �g is obtained extrapolating
that series to the limit in which m0→0.

In Fig. 1, we show the decay of the global persistence
probability for L=60 and m0=0.00125 in double-log scales.
Figure 2 exhibits the behavior of the exponent �g for m0
=0.005, 0.0025, and 0.00125, as well as a linear fit that leads
to the value �g=0.336�9�.

In Table I, we present the estimates for �g as a function of
different initial magnetizations m0 for other lattice sizes.

Our results obtained through the linear extrapolations for
m0→0 are presented in the last column. The estimates of the
exponent �g for odd lattice sizes �L=25 and 35� were ob-
tained for different values of m0. For L=25, we used m0
=0.0064, 0.0032, and 0.0016 and the extrapolated value was
�g=0.337�5�, whereas for L=35 we used m0=240/ �353�,
120/ �353�, and 60/ �353� and the extrapolated value �g

=0.338�5�.
In the second method, we used the fact that the depen-

dence of P�t� on the initial magnetization can be cast in the
following finite-size scaling relation �26�:

P�t� = t−�gf�t/Lz� = L−�gz f̃�t/Lz� , �7�

where z is the dynamical exponent. Thus, the quantity
L�gzP�t� is a universal function of the scaled time �t /Lz� and
the wanted value of �g is that which fulfills that condition for
different lattices. The best estimate for �g is found through
the �2 test �39�.

Unlike the first method used in this paper, in the collapse
method the exponent �g is obtained without the need for

careful preparation of the initial magnetization m0 nor the
limiting procedure. The only requirement is that �m0	�0,
where �·	 is an average done over the samples at t=0. On the
other hand, the collapse method demands the dynamical ex-
ponent z to be known beforehand. In this paper, we used the
estimate obtained very recently for this exponent, z
=1.975�10� �23�.

In Fig. 3, we show the collapse of the curves obtained for
L=50 and 60. The open circles show the collapse of the
larger lattice rescaled in time. Our best estimate for �g for
L2=60 and L1=50 is

�g = 0.335�9� . �8�

The estimates for other lattice sizes are shown in Table II.
These results are in very good agreement with the estimates
obtained directly from the power law predicted in Eq. �4�.

Using, for instance, the result of Eq. �8� and the estimates
of the exponents �, z, �, and � obtained in Ref. �23�, both for
the largest lattice size �L=60�, we verify through Eq. �5�, the
non-Markovian aspect of the phenomenon we are dealing
with, since

�g = 0.335�9� and �g = − � +
d

z2 −
�

�z
= 0.026�17� . �9�

Thus, the global persistence exponent in this case is also
independent of other critical exponents, but the difference
between our estimate for �g and the value obtained from Eq.
�5� is greater than that observed when discrete spin models
were analyzed �see Table III�.

In summary, we have performed short-time Monte Carlo
simulations in order to investigate the scaling behavior of the
persistence probability P�t� for a three-dimensional system
with double-exchange interaction. The dynamic critical ex-
ponent �g that governs the behavior of P�t� at criticality was
estimated by using two different approaches: the straight ap-
plication of the power law behavior P�t�� t−�g and the col-
lapse method for the universal function L�gzP�t�. The results
are consistent with the expected non-Markovian character of
the process.

This work was supported by the Brazilian agencies
CAPES and CNPq.

TABLE II. The global persistence exponent �g for the best col-
lapse for the double-exchange model.

L2�L1 �g

60�50 0.335�9�
60�40 0.333�13�
60�30 0.329�14�
50�35 0.337�11�
40�25 0.330�12�
40�20 0.332�12�

TABLE III. The exponents �g and �g for several models.

Models �g �g

Ising model �28� 0.236�3� 0.212�2�
Three-state Potts model �28� 0.350�8� 0.324�3�
Blume-Capel model �30� 1.080�4� 0.904�21�
DE model �see Eq. �9�� 0.335�9� 0.026�17�
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